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Keywords:

Bowen He
Department of Computer Science
Brown University
Providence, RI 02906

bowen_he@brown.edu

Functionals

Sreehari Rammohan
Department of Computer Science
Brown University
Providence, RI 02906

sreehari@brown.edu

Shangqun Yu
Department of Computer Science
Brown University
Providence, RI 02906

shanggqun_yu@brown.edu

George Konidaris
Department of Computer Science
Brown University

Providence, RI 02906
gdk@cs.brown.edu

Abstract

Reinforcement Learning, Value-Based Continuous Control, Q-

Sam Lobel
Department of Computer Science
Brown University
Providence, RI 02906

sanuel_lobel@brown.edu

We present an alternative architecture for continuous control deep reinforcement learning which we call Q-functionals:
instead of returning a single value for a state and action, our network transforms a state into a function that can be rapidly
evaluated in parallel for many actions, allowing us to efficiently choose high-value actions through sampling alone. This
contrasts with the typical architecture of off-policy reinforcement learning, where a policy network is trained for the
sole purpose of selecting actions from the Q-function. We represent our action-dependent Q-function as a weighted
sum of basis functions (Fourier, Polynomial, etc) over the action space, where the weights are state-dependent and
output by the Q-functional network. In addition to fast sampling, this representation of state-action value is helpful in
imposing an inductive bias on learning (such as making the value function smooth over actions) which can lead to faster
speed of convergence. We characterize our framework, describe two implementations of Q-functionals, and demonstrate
promising performance on a suite of continuous control tasks.



1 Introduction

The final product of a successful reinforcement learning system is a policy that performs well at interacting with the
environment, as measured by expected cumulative discounted reward. A dominant paradigm in reinforcement learning
is to derive policies from a Q-function [8], which summarizes the expected cumulative reward for taking a given action.
When the number of actions available is finite, a strong policy can be derived by enumerating all action-values for a
given state and choosing the one with the highest value. However, this brute enumeration is impossible when there are
large or infinite possible actions, for example when actions are drawn from a continuous vector space. This is the natural
description of, for example, robotic locomotion and control; as such, a significant amount of effort has gone into action-
selection in these domains. A common framework for so-called continuous control problems is to train a policy network
that selects actions according to some criteria of the Q-values.

The training signal from a policy network comes completely from the Q-function, and as such they essentially summarize
information about the Q-function for a given state so as to efficiently produce high-value actions. For example, standard
practice is to train a policy network to estimate the maximum-valued action for any given state[5]. The quantities policy
networks estimate are difficult to calculate on a per-state basis, so policy networks can be thought of as amortizing the
expensive computation of finding desirable actions: the training procedure is expensive, but it allows actions to be
sampled with a single pass of a neural network. We highlight two potential pitfalls of this framework. First, since the
policy network is not reinitialized after every Q-function update, at any given timestep most of the policy training has
been done on old versions of the Q-function; as such, the policy may be maximizing a stale estimate of action-value.
Second, policies are generally either deterministic or sampled from a tight distribution around some single valuable
action. Therefore, it is unlikely for the policy to sample two high-value actions if they are too far apart from each other
[7]. This limits exploration as well as the robustness of the value-function across all actions.

We take a different perspective on this problem: instead of training a network to amortize expensive action-value compu-
tations, we design a learning system such that these evaluations are cheap to do in parallel. This opens up a new avenue
for action-selection: instead of using a policy network, we can evaluate many actions in parallel and choose between
them. Since the policy is directly derived from Q-values at each timestep it always reflects the most current action-value
estimates. Furthermore, random sampling can easily generate high-value actions from throughout the action-space.

In this paper, we introduce a class of Q-functions we call Q-functionals that allow for efficient sampling. A functional is
a function that returns another function. Likewise, a Q-functional transforms a state into a function over actions, such
that Q-values for many actions can be evaluated in parallel and with little overhead. We describe two implementations
of this architecture, and demonstrate its speed and effectiveness at continuous control reinforcement learning.

2 Q-Functionals

In RL, we seek to learn a policy which results in high cumulative discounted reward. For a given policy =, we define the
state-action value function, or Q-function, as:

Q" (st,a1) = Ex[R(st, ar) + V7" (s141)]-

where V7 (s) is the expected value of following 7 from state s. A common method of iteratively improving a Q function
parameterized by 6 is through bootstrapping [6]:

Qo(s,a) < r(s,a) +yV7™(s)

Q-functionals are a way of expressing Q-functions so that many action-values can be evaluated in parallel for a given
state. Consider a traditional Q-function, perhaps represented by a neural network:

Q(s,a) : (S x A) = R.

A standard design for such a Q-function in continuous control is to concatenate states and actions, and then pass this
through a 2-hidden-layer neural network. For this standard architecture, evaluating two action-values for the same state
takes twice as long as evaluating one. A Q-functional breaks the computation of action-values into two parts: first, a
state is transformed into parameters that define a function over the action space. Then, this function is evaluated for the
action(s) in question:

QFUNC(& a) : S — (.A — R) (1)
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Figure 1: Network architecture of traditional Q-function (left) and Q-functional (right)

We design these functions such that while the per-state computation may be expensive, the per-action computation is
relatively cheap. One simple way to represent these functions is by learning the coefficients of basis functions over the
action space. An appropriate choice of basis function also adds an inductive bias to learning action-values: though we
may expect values to have complicated dependence on state (especially when the state is something like an image), in
general we expect values to be relatively smooth with respect to the action dimensions. In Figure 1, we visualize the
difference between the two architectures as differing places that the actions enter the computation.

2.1 Fourier and Polynomial Basis Q-Functionals

We describe two implementations of Q-functionals using different basis functions. First, a Q-functional calculated using
the Fourier basis is shown below in equation 2. The Fourier basis representation of states had great success when used
for Q-learning in small state spaces [4]; we rely on the same inductive bias over the moderately-sized action spaces found
in continuous control. L represents the difference between the max and min action space value allowed, z;(s), y;(s) are
the state-dependent coefficients output by the critic network. C is a matrix of frequencies for the Fourier basis. For a
rank R Q-functional using the Fourier basis and operating in an environment with action dimension d, the full set of
frequencies is represented by the cartesian product {0,1,2, ..., R}%. In practice however, we find that limiting the set of
frequencies to those where the sum of all elements in the frequency is less than or equal to the rank provided sufficient

critic generalization. Formally speaking, C = {Ci ={0,1,2,..., R}9| Z?:o Ci; < R}

Qrunc(s,a) = Z zi(s) Sin(%a -Ci) +yi(s) COS(%G -Cy). (2)
C.eC

The learned coefficients z;(s) and y;(s) are dependent solely on the state, allowing us to efficiently sample many actions
at once without needing to pass this through the coefficient critic network again. We can define a polynomial basis
similarly: we represent our action-value function such that the total polynomial-order is less than some R:

d
Q(s,a) = Z zi(s) H aJC»”. (3)
=0

C;eC

Previous work demonstrates that action-values can be analytically maximized for quadratic polynomials over actions
(R = 2) [2]. Without a policy network, however, Q-functions defined as such are restricted to convex functions over
actions which can be overly limiting. Our sampling framework can derive a strong policy from more complex, higher-
order polynomial Q-functions. In addition, as described in the next section, sampling allows us to calculate state-values
with various methods that work better than simple maximization.

2.2 Extracting policies and state-values from Q-Functionals

In standard continuous-control RL, the policy network is used in two distinct locations: calculating state-value functions
(bootstrapping), and during action-selection (policy-evaluation). Here we describe how a variety of strategies for both
can be implemented using sampling.

The most common strategy for both is action maximization: aiming to find the highest-value action for every state, and
using this for both bootstrapping and action-selection:

m(s) + argmax @Q(s,a) ; V(s)=Q(s,7n(s))

acA
Instead of training a policy network, we can directly estimate the maximum through sampling k actions:
m(s) = argmax Q(s,a;) ; V(s) = max Q(s,a;)
a;€AF a; €AF
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Figure 2: Q-functional Performance in comparison to DDPG. We perform 200 update steps every iteration with each
iteration consisting of {1600, 1600,2000} interaction steps for Bipedal Walker, Hopper, and Half Cheetah respectively.
Q-functionals all have “rank” 3. Results are averaged over 8 seeds, with the standard error shaded.

with accuracy bounds of V(s) dependent on the dimension of A, the Lipschitz-constant L of Q(s,a), and k. For 7-
entropy-regularized RL, the optimal policy is proportional to the Boltzmann distribution over Q-values. This simplifies
to:

exp{Q(s, )/}
Jaexp{Q(s,a)/7}

Due to limitations imposed by common representations of stochastic policies (often constrained to state-dependent
normal distributions over actions), this relation between policy and value cannot be achieved by standard policy-
parameterizations [3]. In contrast, we can consistently estimate these qualities through Monte Carlo sampling:

exp{@(s,a)/7} . V(s)=rlog (% > exp{Q(S,a)/T})

% ZaiE.Ak exp{Q(s, a‘)/T} a;€AF

with accuracy bounds on both 7 (s) and V (s) computable from Quyax — Qmin, k, and 7.

7w(s) = Pr(als) «+

V(o) = [ (9)Q(s.0) log(Pr(als)) = rlog ( [ expi@(s.a)/})

m(s) = Pr(als) =

In our experiments, we derive a robust policy 7(s) and value function V (s) through a “top-n of k” approach: we evaluate
k random actions, and represent our policy and value by sampling from the best n actions during interaction with the
environment and averaging these n values during bootstrapping updates for stability.

W(s)Ntop—n{Q(s,al),...Q(s,ak)} : V(s):mean[top-n{Q(s,al),...Q(s,ak)}] )

This is a similar strategy to TD3 [1], which computes V(s) as a single-sample mean of the Q-values surrounding the
policy-networks output. We find that averaging over many values, instead of simply choosing one, leads to decreased
noisiness of V (s) for the Bellman target in the update, and superior performance at maximizing reward.

3 Experimental Results

Our experimental results are included in Figure 2. All experiments are averaged over 8 seeds, with shading representing
standard error confidence intervals. Both Fourier and Polynomial Q-functionals outperform Deep Deterministic Policy
Gradients (DDPG) [5] on Bipedal Walker (4 dim action space), Hopper (3 dim action space), and Half Cheetah (6 dim
action space). For action-selection and bootstrapping, we sample & = 1,000 actions for each state (which takes roughly
equivalent computation to a single policy + value evaluation for DDPG). For V (s) and our interaction policy 7(s) we
anneal our top-n sampling in the range [£, 1] over the course of training. We find this improves exploration when using
Q-functionals; early in training the agent can try a broader range of actions. During evaluation, we choose the highest-
value action (n = 1) sampled at each state.

As described earlier, standard feedforward Q-functions can be evaluated for multiple actions by simply evaluating the
network multiple times. We quantify the speedup of the Q-functional paradigm compared to a standard feedforward
Q function in Figure 2. A rank-3 Fourier critic is roughly 8 times faster than a standard neural network at this task on
an Nvidia 2080ti GPU. Furthermore, the lightweight action-evaluation of Q-functionals allows for much larger sampling
size: the standard architecture runs out of GPU memory with 5,000 samples, while the Fourier critic can evaluate up
to 10,000 actions in a single pass. In the low-sample regime (up to 100), Q-functionals evaluate in near-constant time
because the entire computation can be processed in parallel on a consumer GPU.
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Figure 4: Speed comparison of 100 sets of action-evaluations of the same states (batch size 1024), for varying number of
action-samples. Left: samples up to 10,000. Right: zoomed in sampling up to 100.
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We

Discussion

describe the framework of Q-functionals, a class of architectures for continuous-control RL that allow for efficiently

calculating actions through sampling, without the need for training a large policy network. Besides requiring roughly half

the

parameters, our method naturally leads to more thorough exploration, represents the most current estimates of the

Q-value, and enforces a smooth inductive bias over the action-space. We find that implementations of this framework
consistently outperform baseline policy gradient methods on a range of continuous control tasks.
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