
Flipping Coins to Estimate Pseudocounts for
Exploration in Reinforcement Learning

Sam Lobel ∗

Department of Computer Science
Brown University

Providence, RI 02906
samuel lobel@brown.edu

Akhil Bagaria ∗

Department of Computer Science
Brown University

Providence, RI 02906
akhil bagaria@brown.edu

George Konidaris
Department of Computer Science

Brown University
Providence, RI 02906
gdk@cs.brown.edu

Abstract

Count-based exploration can lead to optimal reinforcement learning in small tabular domains. But, it is challenging to
keep track of visitation counts in environments with large state spaces. Previous work in this area has converted the
problem of learning visitation counts to that of learning a restrictive form of a density model over the state-space. Rather
than optimizing a surrogate objective, our proposed algorithm directly regresses to a state’s visitation count. Compared to
previous work, we show that our method is significantly more effective at deducing ground truth visitation frequencies;
when used as an exploration bonus for a model-free reinforcement learning algorithm, our method outperforms existing
approaches.

Keywords: Exploration, Reinforcement learning

∗Equal Contributors

1 Introduction

Effective exploration is key to solving long-horizon problems using reinforcement learning. When the number of possible
states is small, an agent can keep track of how many times it has visited each state. This count can then be used as an
exploration bonus to train an optimal policy [Strehl and Littman, 2008]. When the environment has a large number of
states, the agent may not visit the same state twice. To facilitate count-based exploration in such domains, the notion of
visitation counts are generalized to that of “pseudocounts”. Previous methods have equated the problem of estimating
pseudocounts to the canonical machine learning problem of density estimation: the lower the probability density (under
the learned model) of a given state, the higher the reward for reaching it [Bellemare et al., 2016, Ostrovski et al., 2017].

While providing the first way to estimate pseudocounts, Bellemare et al. [2016]’s relationship between counts and prob-
ability densities exists only when the density model meets the following restrictions [Ostrovski et al., 2017]:

• it must allow computing normalized probability densities, which precludes many powerful density models

• it must be learning-positive, which means that the probability density of a state must increase when it is encoun-
tered by the density model again,

• it must be updated on a state exactly once per visitation, precluding common techniques such as batching and
replay.

Rather than designing a density model under such a restrictive setting, we propose to directly learn the exploration
bonus associated with different states. Our proposed method does not place any restrictions on the type of function
approximator used and can be trained using any and all of the common deep learning practices (such as using optimizers
with adaptive learning rates, batching, experience replay and so on) [Goodfellow et al., 2016].

Given all the restrictions imposed by Bellemare et al. [2016]’s pseudocounts, it is tempting to forego count-based explo-
ration in favor of other novelty estimates that have fewer theoretical guarantees. Random Network Distillation (RND)
[Burda et al., 2019] is one such popular method that has achieved state-of-the-art performance on some hard exploration
problems in the Arcade Learning Environment (ALE). RND assigns an exploration bonus to a state using a simple, el-
egant heuristic: the novelty of a state is directly proportional to how the accurately a learned network can mimic a
randomly-initialized network’s projection. If s is a state, fθ is a neural network being learned and fθ∗ is a fixed randomly
initialized neural network, the RND exploration bonus is given by ri(s) = ||fθ(s)− fθ∗(s)||2.

The output of a random network fθ∗ can have different scales depending on the random initialization of θ∗ or the input
state s. This makes RND sensitive to hyperparameter settings. Furthermore, unlike visitation counts, RND’s explo-
ration bonus does not have an intuitive interpretation—it is an unnormalized distance in a neural network’s latent space.
Normalization tricks are often used to stabilize training in practice, but they introduce their own unintended artifacts.

Another shortcoming of RND is that it conflates encountering a state and updating a model on that state. An RL agent may
encounter a state exactly once, but the novelty associated with that state will fall every time RND’s prediction model fθ is
updated on it. This is not ideal because a single gradient update is often insufficient for learning effective representations
in high-dimensional spaces. As we will see in the next section, our procedure gets counts from the fixed point of an
optimization procedure, allowing us to train our model to convergence.

Our core insight is that a state’s visitation count can be derived from the sampling distribution of Bernouli trials made
every time a state is encountered. When we use a neural network to predict this sampling distribution, we inadvertently
learn the inverse of the state’s visitation count. We test this procedure on a visual grid world and show that our method
can recover the ground truth counts while other pseudocount methods cannot. When used as an exploration bonus, it
causes a model-free RL agent to rapidly explore its environment and outperform strong model-free baselines.

2 Coin Flip Network (CFN)

Consider the fair coin flip distribution of -1 and +1. Imagine you flip this coin n times, and average the results into yn.
In expectation the average is 0, but any given time you run this experiment you likely get a non-zero value for yn. For
example, if you flip the coin once you will get Pr(y1 = −1) = 0.5, and Pr(y1 = 1) = 0.5. If you flip it twice, you get
Pr(y2 = −1) = 0.25 and Pr(y2 = 0) = 0.5 and Pr(y2 = 1) = 0.25. More generally, for all n the second moment of yn is
related to the inverse-count:

M2(yn) = E[y2n] =
∑
i

Pr(yn = i) ∗ i2 = 1/n. (1)

1

2.1 Bonuses from states

We construct a dataset of m encountered states {s1, ..., sm}, and pair each state with a random vector of d coin flips
ci ∼ {−1, 1}d. The mean of n random coin flip vectors is a vector of d samples from yn:(1

n

n∑
i=1

ci

)
j
∼ yn (2)

Consider the class of functions F such that f ∈ F : R|S| → Rd. Our goal is to find f∗ ∈ F that best predicts each ci:

f∗(s) = argmin
f

m∑
i=1

∥ci − f(si)∥2 = argmin
f

m∑
i=1

d∑
j=1

(cij − f(si)j)
2 (3)

If each state si is encountered exactly once, the optimization problem above will simply learn the mapping from states to
their associated random vector. However we are interested in cases where there are multiple instances of some states. In
that case, the best you can do is to learn the mean random vector for all instances of a given state. Let’s look at one such
state s, of which there are n occurrences, and each ci is a d-dimensional sample from the coinflip distribution:

f∗(s) =
1

n

n∑
i=1

ci

=⇒ E
[1
d
∥f∗(s)∥2

]
=

1

d

d∑
j=1

E
[(n∑

i=1

cij
n

)2]
[Taking expectation of the vector norm]

=
1

d

d∑
j=1

E
[
y2n

]
[Using Eq 2]

=
1

d

d∑
j=1

1

n
=

1

n
[Using Eq 1]

This suggests that in expectation, f∗(s) contains an unbiased and consistent estimator of the inverse-count. We can
now use this property of f∗ to map states to bonuses. We train a neural network fθ(s) to approximately solve the
optimization problem described in Equation 3, and obtain exploration bonuses using:

B(s) :=
√

1

d
∥fθ(s)∥2 ≈

1√
N(s)

(4)

2.2 Bonuses from many states

fθ(s) is a deterministic function that maps each input to a single output: that’s why the best we can do is learn the mean of
a state’s random vectors. But, we can learn a different mean for each state. A learning architecture with infinite capacity
would learn the exact mean for each unique state. However, finite capacity and training time imply that the network
will not learn this mapping exactly. Next, we will discuss ways in which we can control how our network trades off
prediction errors among states in the data set and generalizes to unseen states during inference.

2.3 Prioritizing Novel States

Training fθ to convergence at every time step is not feasible. To maintain reasonable training time, we update it once
every time step on a single mini-batch of states drawn from its replay buffer. Revisiting the optimization target from
Equation 3, we note that a unique state s visited n times will appear in uniform sampling n times more than a state visited
only once. This would make fθ disproportionately better at predicting the bonus corresponding to high-count states. To
remedy this problem, we assign more weight to low-count states. Note that we can re-weight the optimization target
from Equation 3 by scaling each state’s contribution to the loss by its true count, without changing the ideal fixed point
f∗(s):

f∗
prioritized(s) = argmin

f

m∑
i=1

1

True Count(si)
∥ci − f(si)∥2.

Of course, we do not have access to the true count during training; so, we approximate this procedure by prioritizing by
our current estimate of inverse-count:

priority(s)← 1

d
∥fθ(s)∥2.

2

Figure 1: (left) Comparing bonus estimation accuracy for different variants of CFN and PixelCNN on the Visual Grid-
world task (end of training). (right) Zoomed in version of PixelCNN’s bonus prediction accuracy from the left subplot.

Prioritizing in this way introduces another difficulty: if a state has been recently added to the replay buffer, it has not
appeared in many gradient updates and thus we cannot trust our estimate of its count. To combat this we also prioritize
sampling by the number of times, nupdates(s), we have sampled s in the past. We combine both these prioritization
schemes using an α-weighted sum:

priority(s) = α

(
1

nupdates(s)

)
+ (1− α)

1

d
∥fθ(s)∥2.

2.4 Temporal Consistency for Better Generalization

The training scheme described so far ignores temporal structure present in sequential decision problems; to encourage
meaningful generalization, we want our training scheme to reflect the temporal relations between states. We encourage
sequential states to have similar latent representations by only “replacing” each random coin flip with a probability pr:

ci+1,j =

{
{−1, 1} with probability pn
ci,j with probability (1− pn)

This makes the targets for sequential states similar, which in turn encourages them to have similar latent representations.

3 Experiments

We test our algorithm on a “visual grid world” task [Allen et al., 2021]. In this task, the agent gets an 84 × 84 image
observation of the grid. The controllable block starts every episode at the bottom-left cell; it gets a terminating reward
of 1 when it reaches the goal at the top-right of the grid and a reward of 0 everywhere else. For all experiments we use
Rainbow DQN [Hessel et al., 2018] as a base agent and modify it with various exploration bonuses.

3.1 Evaluating Bonus Prediction Accuracy

We test CFN’s ability to correctly predict the inverse visitation count in a 21 × 21 visual grid world. The learning agent
gets image-based observations as input, but we keep track of the ground truth state (the agent’s x, y location in the grid)
to evaluate how well different methods can reconstruct the true bonus (or equivalently, 1/

√
ns). Figure 1 (left) shows

the importance of α (as described in section 2.3)—when the ground-truth bonus is high (i.e, when the visitation count is
low), CFN with α < 1 outperforms CFN with α = 1 because α < 1 up-weights prediction errors on novel states. Figure
1 also shows that PixelCNN is unable to learn a meaningful count—not only are its predictions very close to 0, it assigns
very similar exploration bonus to states that have been seen 25 times (which should have a true bonus of 0.2) and states
that have been seen only once (which should have a true bonus of 1.0). In other words, PixelCNN does not recover the
true counts in this domain and it dramatically underestimates the exploration bonus for truly novel states.

3

Figure 2: (left) Learning curves comparing CFN with Rainbow and PixelCNN on a 42× 42 grid. (right) Comparing CFN
with different values of pr on 21×21 grid with noisy observations. Each line denotes the mean undiscounted return over
5 random seeds, shaded regions denote standard error. Each iteration is 1000 action executions in the environment.

3.2 Reinforcement Learning with CFN Bonus

RL in Visual Gridworld. We test if CFN’s exploration bonus can lead to sample-efficient reinforcement learning. For
this experiment, we consider a 42×42 visual gridworld. As shown in Figure 2 (left), a Rainbow agent [Hessel et al., 2018]
is unable to explore this grid and get any positive reward. When augmented with the CFN exploration bonus, the same
agent rapidly explores the state-space and gets high return. We also compare our CFN agent to the most popular way of
computing pseudocounts, PixelCNN [Ostrovski et al., 2017]; we find that CFN comfortably outperforms PixelCNN.

RL in Noisy Visual Gridworld. We now test if CFN is robust to observation noise. For this experiment, we consider a
21× 21 visual grid world and add speckled noise to the visual observations. Figure 2 (right) shows that pr (described in
Section 2.4) helps CFN generalize to similar inputs and be robust to observation noise.

4 Conclusion

Though pseudocount-based exploration methods are a principled way to perform thorough exploration in sparse-reward
reinforcement learning problems, they have not been the dominant algorithm used in practice; we aim to remedy that.
We point to restrictions on the functional form, difficulty of implementation, and inability to use with a wealth of deep-
learning training tricks, as a few reasons for this theory-practice divide. In contrast, CFNs estimate counts through
a simple optimization procedure over the data set of encountered states, and can be used with most standard deep
learning architectures. We find that CFNs explore more rapidly and represent ground-truth counts better than existing
pseudocount methods. In this paper we focus on a simple environment where we can directly compute the counting
accuracy; in future work, we plan to scale to more complicated domains like the hard exploration games in the ALE.

References
Cameron Allen, Neev Parikh, Omer Gottesman, and George Konidaris. Learning markov state abstractions for deep reinforcement

learning. Advances in Neural Information Processing Systems, 34, 2021.
Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos. Unifying count-based exploration

and intrinsic motivation. In Advances in Neural Information Processing Systems, pages 1471–1479, 2016.
Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network distillation. In International Confer-

ence on Learning Representations, 2019. URL https://openreview.net/forum?id=H1lJJnR5Ym.
Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad

Azar, and David Silver. Rainbow: Combining improvements in deep reinforcement learning. In Thirty-second AAAI conference on
artificial intelligence, 2018.

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with neural density models. In Interna-
tional conference on machine learning, pages 2721–2730. PMLR, 2017.

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for markov decision processes. Journal of
Computer and System Sciences, 74(8):1309–1331, 2008.

4

